Habitability

The habitability of Proxima Centauri b has not been established, but the planet is subject to stellar wind pressures of more than 2,000 times those experienced by Earth from the solar wind. This radiation and the stellar winds would likely blow any atmosphere away, leaving the subsurface as the only potentially habitable location on that planet.
The exoplanet is orbiting within the habitable zone of Proxima Centauri, the region where, with the correct planetary conditions and atmospheric properties, liquid water may exist on the surface of the planet. The host star, with about an eighth of the mass of the Sun, has a habitable zone between ∼0.0423–0.0816 AU. In October 2016, researchers at France's CNRS research institute stated that there is a considerable chance of the planet harboring surface oceans and having a thin atmosphere. However, unless the planet transits in front of its star from the perspective of Earth, it is difficult to test these hypotheses.
Even though Proxima Centauri b is in the habitable zone, the planet's habitability has been questioned because of several potentially hazardous physical conditions. The exoplanet is close enough to its host star that it might be tidally locked. In this case, it is expected that any habitable areas would be confined to the border region between the two extreme sides, generally referred to as the terminator line, since it is only here that temperatures might be suitable for liquid water to exist. If the planet's orbital eccentricity is 0, this could result in synchronous rotation, with one hot side permanently facing towards the star, while the opposite side is in permanent darkness and freezing cold. However, Proxima Centauri b's orbital eccentricity is not known with certainty, only that it is below 0.35—potentially high enough for it to have a significant chance of being captured into a 3:2 spin-orbit resonance similar to that of Mercury, where Proxima b would rotate around its axis approximately every 7.5 Earth days with about 22.4 Earth days elapsing between one sunrise and the next. Resonances as high as 2:1 are also possible. Another problem is that the flares released by Proxima Centauri could have eroded the atmosphere of the exoplanet. However, if Proxima b had a strong magnetic field, the flare activity of its parent star would not be a problem.
If water and an atmosphere are present, a far more hospitable environment would result. Assuming an atmospheric N2 pressure of 1 bar and ∼0.01 bar of CO2, in a world including oceans with average temperatures similar to those on Earth, a wide equatorial belt (non-synchronous rotation), or the majority of the sunlit side (synchronous rotation), would be permanently ice-free. A large portion of the planet may be habitable if it has an atmosphere thick enough to transfer heat to the side facing away from the star. If it has an atmosphere, simulations suggest that the planet could have lost about as much as the amount of water that Earth has due to the early irradiation in the first 100–200 million years after the planet's formation. Liquid water may be present only in the sunniest regions of the planet's surface in pools either in an area in the hemisphere of the planet facing the star or—if the planet is in a 3:2 resonance rotation—diurnally in the equatorial belt. All in all, astrophysicists consider the ability of Proxima Centauri b to retain water from its formation as the most crucial point in evaluating the planet's present habitability. The planet may be within reach of telescopes and techniques that could reveal more about its composition and atmosphere, if it has any.
If an atmosphere is present, longer-wavelength radiation, from the red dwarf parent star mean that weather will be affected. Cloud formation on the day side of the planet will be inhibited, compared to Earth (or Venus), resulting in clearer skies.
Comments
Post a Comment